Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 6 de 6
Фильтр
Добавить фильтры

база данных
Годовой диапазон
1.
Diagnostics (Basel) ; 12(10)2022 Sep 30.
Статья в английский | MEDLINE | ID: covidwho-2065753

Реферат

INTRODUCTION: Thrombotic complications, such as pulmonary embolism, are common in COVID-19 patients. Point-of-care ultrasound is a highly recommended tool for orientation in critically ill patients with suspected or confirmed complications. METHODS: An observational study was conducted on 32 consecutive patients with confirmed pulmonary embolism and COVID-19 infection treated in the Intensive Care Unit of the University Hospital Medical Center "Bezanijska kosa", Belgrade, Serbia, between April 2021 and March 2022. Predictors of the need for oxygen support were determined, while point-of-care echocardiographic parameters and various anamnestic, laboratory, and clinically significant parameters were correlated with the Pulmonary Embolism Severity Index (PESI) score. RESULTS: More than two-thirds of patients in our study had PE symptoms present at hospital admission (68.8%). The majority of patients had segmental pulmonary embolism (48.4%), with high to very high PESI score values in 31.3% of patients. Pneumonia was present in 68.8% of the study population. The PESI score was negatively correlated with diastolic blood pressure and SaO2 at the time of PE diagnosis, LV ejection fraction, and PVAT. A positive correlation was found between the PESI score, maximum CRP, and D-dimer at the time of PTE diagnosis. A larger right ventricular diameter was associated with a greater need for oxygen support. CONCLUSION: Point-of-care echocardiography is a valuable tool for the risk assessment of COVID-19 patients with pulmonary embolism. Right ventricular size stood out as a significant marker of disease severity.

2.
Semin Thromb Hemost ; 48(7): 850-857, 2022 Oct.
Статья в английский | MEDLINE | ID: covidwho-2050627

Реферат

Critically ill COVID-19 patients present an inflammatory and procoagulant status with a high rate of relevant macro- and microvascular thrombosis. Furthermore, high rates of heparin resistance have been described; yet, individualized anticoagulation by drug monitoring has not been sufficiently researched. We analyzed data from critically ill COVID-19 patients treated at Innsbruck Medical University Hospital with routinely adapted low-molecular-weight heparin (LMWH) doses according to anti-Xa peak levels, and regularly performed ClotPro analyses (a viscoelastic hemostatic whole blood test). A total of 509 anti-Xa peak measurements in 91 patients were categorized as below (<0.008 IU/mL/mg), within (0.008-0-012 IU/mL/mg) or above (> 0.012 IU/mL/mg) expected ranges with respect to the administered LMWH doses. Besides intergroup comparisons, correlations between anti-Xa levels and ClotPro clotting times (CTs) were performed (226 time points in 84 patients). Anti-Xa peak levels remained below the expected range in the majority of performed measurements (63.7%). Corresponding patients presented with higher C-reactive protein and D-dimer but lower antithrombin levels when compared with patients achieving or exceeding the expected range. Consequently, higher enoxaparin doses were applied in the sub-expected anti-Xa range group. Importantly, 47 (51.6%) patients switched between groups during their intensive care unit (ICU) stay. Anti-Xa levels correlated weakly with IN test CT and moderately with Russell's viper venom (RVV) test CT. Critically ill COVID-19 patients present with a high rate of LMWH resistance but with a variable LMWH response during their ICU stay. Therefore, LMWH-anti-Xa monitoring seems inevitable to achieve adequate target ranges. Furthermore, we propose the use of ClotPro's RVV test to assess the coagulation status during LMWH administration, as it correlates well with anti-Xa levels but more holistically reflects the coagulation cascade than anti-Xa activity alone.


Тема - темы
COVID-19 Drug Treatment , Hemostatics , Humans , Heparin, Low-Molecular-Weight/therapeutic use , Enoxaparin/therapeutic use , Critical Illness , C-Reactive Protein , Anticoagulants/therapeutic use , Heparin/adverse effects , Viper Venoms , Antithrombins , Factor Xa Inhibitors
3.
J Clin Med ; 11(17)2022 Aug 31.
Статья в английский | MEDLINE | ID: covidwho-2023800

Реферат

The development of extracorporeal life support technology has added a new dimension to the care of critically ill patients who fail conventional treatment options. Extracorporeal membrane oxygenation (ECMO)-specialized temporary life support for patients with severe cardiac or pulmonary failure-plays a role in bridging the time for organ recovery, transplant, or permanent assistance. The overall patient outcome is dependent on the underlying disease, comorbidities, patient reaction to critical illness, and potential adverse events during ECMO. Moreover, the contact of the blood with the large artificial surface of an extracorporeal system circuit triggers complex inflammatory and coagulation responses. These processes may further lead to endothelial injury and disrupted microcirculation with consequent end-organ dysfunction and the development of adverse events like thromboembolism. Therefore, systemic anticoagulation is considered crucial to alleviate the risk of thrombosis and failure of ECMO circuit components. The gold standard and most used anticoagulant during extracorporeal life support is unfractionated heparin, with all its benefits and disadvantages. However, therapeutic anticoagulation of a critically ill patient carries the risk of clinically relevant bleeding with the potential for permanent injury or death. Similarly, thrombotic events may occur. Therefore, different anticoagulation strategies are employed, while the monitoring and the balance of procoagulant and anticoagulatory factors is of immense importance. This narrative review summarizes the most recent considerations on anticoagulation during ECMO support, with a special focus on anticoagulation monitoring and future directions.

4.
Diagnostics (Basel) ; 12(6)2022 Jun 06.
Статья в английский | MEDLINE | ID: covidwho-1884056

Реферат

During the last five decades, lung sonography has developed into a core competency of intensive care medicine. It is a highly accurate bedside tool, with clear diagnostic criteria for most causes of respiratory failure (pneumothorax, pulmonary edema, pneumonia, pulmonary embolism, chronic obstructive pulmonary disease, asthma, and pleural effusion). It helps in distinguishing a hypovolemic from a cardiogenic, obstructive, or distributive shock. In addition to diagnostics, it can also be used to guide ventilator settings, fluid administration, and even antimicrobial therapy, as well as to assess diaphragmatic function. Moreover, it provides risk-reducing guidance during invasive procedures, e.g., intubation, thoracocentesis, or percutaneous dilatational tracheostomy. The recent pandemic has further increased its scope of clinical applications in the management of COVID-19 patients, from their initial presentation at the emergency department, during their hospitalization, and after their discharge into the community. Despite its increasing use, a consensus on education, assessment of competencies, and certification is still missing. Deep learning and artificial intelligence are constantly developing in medical imaging, and contrast-enhanced ultrasound enables new diagnostic perspectives. This review summarizes the clinical aspects of lung sonography in intensive care medicine and provides an overview about current training modalities, diagnostic limitations, and future developments.

5.
J Clin Med ; 11(5)2022 Feb 24.
Статья в английский | MEDLINE | ID: covidwho-1736961

Реферат

BACKGROUND: Extracorporeal membrane oxygenation (ECMO) is a specialised life support modality for patients with refractory cardiac or respiratory failure. Multiple studies strived to evaluate the benefits of ECMO support, but its efficacy remains controversial with still inconsistent and sparse information. METHODS: This retrospective analysis included patients with ECMO support, admitted between January 2010 and December 2019 at a tertiary university ECMO referral centre in Austria. The primary endpoint of the study was overall all-cause three-month mortality with risk factors and predictors of mortality. Secondary endpoints covered the analysis of demographic and clinical characteristics of patients needing ECMO, including incidence and type of adverse events during support. RESULTS: In total, 358 patients fulfilled inclusion criteria and received ECMO support due to cardiogenic shock (258, 72%), respiratory failure (88, 25%) or hypothermia (12, 3%). In total, 41% (145) of patients died within the first three months, with the median time to death of 9 (1-87) days. The multivariate analysis identified hypothermia (HR 3.8, p < 0.001), the Simplified Acute Physiology Score III (HR 1.0, p < 0.001), ECMO initiation on weekends (HR 1.6, p = 0.016) and haemorrhage during ECMO support (HR 1.7, p = 0.001) as factors with higher risk for mortality. Finally, the most frequent adverse event was haemorrhage (160, 45%) followed by thrombosis. CONCLUSIONS: ECMO is an invasive advanced support system with a high risk of complications. Nevertheless, well-selected patients can be successfully rescued from life-threatening conditions by prolonging the therapeutic window to either solve the underlying problem or install a long-term assist device. Hypothermia, disease severity, initiation on weekends and haemorrhage during ECMO support increase the risk for mortality. In the case of decision making in a setting of limited (ICU) resources, the reported risk factors for mortality may be contemplable, especially when judging a possible ECMO support termination.

6.
Diagnostics (Basel) ; 11(12)2021 Nov 25.
Статья в английский | MEDLINE | ID: covidwho-1542448

Реферат

The concept of intensive care units (ICU) has existed for almost 70 years, with outstanding development progress in the last decades. Multidisciplinary care of critically ill patients has become an integral part of every modern health care system, ensuing improved care and reduced mortality. Early recognition of severe medical and surgical illnesses, advanced prehospital care and organized immediate care in trauma centres led to a rise of ICU patients. Due to the underlying disease and its need for complex mechanical support for monitoring and treatment, it is often necessary to facilitate bed-side diagnostics. Immediate diagnostics are essential for a successful treatment of life threatening conditions, early recognition of complications and good quality of care. Management of ICU patients is incomprehensible without continuous and sophisticated monitoring, bedside ultrasonography, diverse radiologic diagnostics, blood gas analysis, coagulation and blood management, laboratory and other point-of-care (POC) diagnostic modalities. Moreover, in the time of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, particular attention is given to the POC diagnostic techniques due to additional concerns related to the risk of infection transmission, patient and healthcare workers safety and potential adverse events due to patient relocation. This review summarizes the most actual information on possible diagnostic modalities in critical care, with a special focus on the importance of point-of-care approach in the laboratory monitoring and imaging procedures.

Критерии поиска